Multi-Release JARs

En los últimos años Java ha estado evolucionando muy rápido con el nuevo ciclo de distribución en el que se liberan 2 nuevas versiones por año.

Con la nueva versión 17 Long Time Support (LTS) de la JDK y la versión 18 a la vuelta de la esquina, muchos desarrollos aún están asimilando la anterior versión LTS, la JDK 11.

Se hace patente el hecho que los desarrollos de aplicaciones Java no pueden seguir el ritmo en el que van apareciendo las nuevas características del lenguaje y por eso muchas de ellas tardan en ser de uso general. Una de las consecuencias de este hecho es que los desarrolladores de librerías y frameworks están forzados a esperar hasta que la base de aplicaciones a los que dan soporte se adapta para seguir siendo compatibles con ellas.

Desde la aparición de Java 9 han aparecido mecanismos para paliar este hecho, posibilitando la construcción de artefactos compatibles con múltiples versiones de JDK: Uno de ellos son los Multi-Release JARs (MRJAR), que hace posible integrar en un mismo componente (fichero JAR) diversas versiones de código compatibles con múltiples versiones de JDK.

En este artículo se explica el funcionamiento de los MRJAR así como su integración en un proyecto construido mediante Maven.

Seguir leyendo Multi-Release JARs

OCP11 – Localization & Internationalization

Internationalization is the process by which an application is designed to adapt to multiple regions and languages using the mechanisms provided by the platform, Java Platform in this case. This includes placing text strings in properties files for every supported language, ensure that a proper formatting is used when data is displayed (E.G. numbers and dates), etc. This process is also known as I18N

A localized application is compatible with multiple language and country/region configurations (locales). The localization process is also known as L12N.

Seguir leyendo OCP11 – Localization & Internationalization

OCP11 – Creating nested classes (V) – Defining an Anonymous Class

A anonymouys class is a specialized form of a local class that does not have a name.

It is declared and instantiated all in one statement using the new keyword, a type name with parenthesis, and a set of braces {}.

Anonymous classes are required to extend an existing class or implement an existing interface.

Example using an Abstract class:

  public class ZooGiftShop {
     abstract class SaleTodayOnly {
        abstract int dollarsOff();
     }
     public int admission(int basePrice) {
        SaleTodayOnly sale = new SaleTodayOnly() {
           int dollarsOff() { return 3; }
        };  // Don't forget the semicolon!
        return basePrice - sale.dollarsOff();
} }

Line 2 through 4 define an abstract class through .
Line 6 through 8 define the anonymous class (it hasn’t a name).
The code says to instantiatea new SaleTodayOnly object. It is abstract but it is ok because we provide the class body right there – anonymously.
In this example, writing an anonymous class is equivalent to writing a local class with an unspecified name that extends SaleTodayOnly and then immediately using it.
Line 8 specifically we are declaring a local variable on these lines. Local variable declarations are required to end with semicolons, just like ohter java statements – even if they are long and happen to contain an anonymous class.

Seguir leyendo OCP11 – Creating nested classes (V) – Defining an Anonymous Class

OCP11 – Creating nested classes (IV) – Writing a local class

A local class is a nested class defined within a method.

Like local variables, a local class declaration does not exist until the method is invoked and it goes out of scope when the method returns.

This means you can create instances only from within the method. Those instances can still be returned from the method. This is how local variables work.

IMPORTANTE NOTE TO CONSIDER FOR THE EXAM: Local classes are not limited to being declared only inside methods. They can be declared inside constructors and initializers too. For simplicity, we limit our discussion to methods.

Local Classes have the following properties:

  • They do not have an access modifier.
  • They cannot be declared static and cannot declare static fields or methods, except for static final fields.
  • They have access to all fields and methods of the enclosing class (when defined in an instance method).
  • They can access local variables if the variables are final or effectively final.

IMPORTANTE NOTE TO CONSIDER FOR THE EXAM: Effectively final refers to a local variable whose value does not change after it is set. A simple test for effectively final is to add the final modifierto the local vairable declaration. If it still compiles, then the local variable is effectively final.

Example – Multiply two numbers in a complicated way:

1:  public class PrintNumbers {
2:     private int length = 5;
3:     public void calculate() {
4:        final int width = 20;
5:        class MyLocalClass {
6:           public void multiply() {
7:              System.out.print(length * width);
8:           }
9:        }
10:       MyLocalClass local = new MyLocalClass();
11:       local.multiply();
12:    }
13:    public static void main(String[] args) {
14:       PrintNumbers outer = new PrintNumbers();
15:       outer.calculate();
16:    }
17: }

Line 5 is the local class.
Line 7 refers to an instance variable and a final local variable, so both variables references are allowed from within the local class.
Line 9 is the local class.
Line 12 is the place where the class’ scope ends.

Local variables references are allowed if they are final or effectively final

The compile is generatinga .class file from the local class. A separate class has no way to refer to local variables.

If the local variable is final, Java can handle it by passing it to the constructor of the local class or by storing it in the .class file.

If it weren’t effectively final, these tricks wouldn’t work becuase the value could change after the copy was made.

Example:

public void processData() {
   final int length = 5;
   int width = 10;
   int height = 2;
   class VolumeCalculator {
      public int multiply() {
         return length * width * height; // DOES NOT COMPILE
      }
   }
   width = 2;  // Variable reassignation - origin of the error compilation
}

The length and height variables are final and effectively final, respectively, so neither causes a compilation issue.

On the other hand, the width variable is reassigned during the method so it cannot be effectively final. This is the reason why the local class declaration does not compile.

OCP11 – Creating nested classes (III) – Creating an static nested class

A static nested class is a static type defined at the member level. Unlike an inner class, a static nested class can be instantiated without an instance of the ecnlosing class.

The trade-off though, is it can’t access instance variables or methods in the outer class directly. It can be done but it requires an explicit reference to an outer class variable. It is like a top-level class except for:

  • The nesting creates a namespace because the cnlosing class name must be used to refer it.
  • It can be made private or use one of the other access modifiers to encapsulate it.
  • The enclosing class can refer to the fields and methods of the static nested class.

Example:

1: public class Enclosing {
2:    static class Nested {
3:       private int price = 6;
4:    }
5:    public static void main(String[] args) {
6:       Nested nested = new Nested();
7:       System.out.println(nested.price);
8: } }

Line 6 instantiates the nested class. Since the class is static, you don’t need an instance of Enclosing to use it.
Line 7 allows you to access private instance variables.

Importing a static Nested Class

Importing a static nested class is done using the regular import.

  // Toucan.java
    package bird;
    public class Toucan {
       public static class Beak {}
    }
    // BirdWatcher.java
    package watcher;
    import bird.Toucan.Beak; // regular import ok
    public class BirdWatcher {
       Beak beak;
    }

Since it is static you can also use a static import:

import  static  bird.Toucan.Beak;

IMPORTANT TO CONSIDER HERE FOR THE EXAM: Java treats the cnsloing class as if were a namespace.

OCP11 – Creating nested classes (II) – Declaring an Innner Class

An inner class, also called a member inner class, is a non‐ static type defined at the member level of a class (the same level as the methods, instance variables, and constructors). Inner classes have the following properties:

  • Can be declared public, protected, package‐private (default), or private
  • Can extend any class and implement interfaces
  • Can be marked abstract or final
  • Cannot declare static fields or methods, except for static final fields
  • Can access members of the outer class including private members. The last property is actually pretty cool. It means that the inner class can access variables in the outer class without doing anything special.

Example – Ready for a complicated way to print Hi three times?

1:  public class Outer {
2:     private String greeting = "Hi";
3:     
4:     protected class Inner {
5:        public int repeat = 3;
6:        public void go() {
7:           for (int i = 0; i < repeat; i++)
8:              System.out.println(greeting);
9:        }
10:    }
11:    
12:    public void callInner() {
13:       Inner inner = new Inner();
14:       inner.go();
15:    }
16:    public static void main(String[] args) {
17:       Outer outer = new Outer();
18:       outer.callInner();
19: } }

Line 8 shows that the inner class just refers to greeting as if it were available. It works even though the variable is private being on the same class.

Line 13 shows that an instance of the outer class can instantiate Inner normally. It works because callInner() is an instance method on Outer. Both Inner and callInner() are members of Outer.

Seguir leyendo OCP11 – Creating nested classes (II) – Declaring an Innner Class

OCP11 – Creating nested classes (I)

A nested class is a class that is defined within another class. We have four different nested classes types:

  1. Inner class: A non-static type defined at the member level of a class.
  2. Static nested class: A static type defined at the member level of a class.
  3. Local class: A class defined within a method body.
  4. Anonymous class: A special case of a local class that does not have a name.

By convention we use the term inner or nested class to apply to other Java types, including enums and interfaces.

Interfaces and enums can be declared as both inner classes and static nested classes but not as local or anonymous classes.

We will explain each one of these nested classes in a different post and we will use this post to show which are the syntax rules permitted in Java for nested classes in three tables.

Seguir leyendo OCP11 – Creating nested classes (I)

Montar unidades de disco externas de forma permanente en Linux

En el siguiente artículo se explica la configuración necesaria en Linux para montar unidades de disco externas automáticamente al iniciar el sistema. Aunque la explicación y ejemplos se han hecho específicamente para sistemas Ubuntu, los mismos pasos también son aplicables a otros sistemas Linux.

El proceso se puede dividir en los siguientes pasos:

  1. Identificar el dispositivo de disco externo en el sistema.
  2. (Opcional) Configurar un grupo que permita restringir el acceso al contenido de las unidades externas.
  3. Modificar la configuración en fstab para añadir las unidades de disco externas a los dispositivos a montar durante el arranque del sistema.

Adicionalmente, se explica cómo habilitar un disco montado como volumen en contenedores Docker cuando se utilizan usuarios con acceso restringido a las ubicaciones de disco.

Seguir leyendo Montar unidades de disco externas de forma permanente en Linux

OCP 11 – Language Enhancements (Java Fundamentals – Enumerations)

Generally speaking an Enumeration is like a fixed set of constants. But in Java an enum (short for enumerated type) can be a top-level type like a class or a interface, as well as a nested type like an inner class.

Using an enum is much better than using a lot of constants because it provides type safe checkline. With numeric or Strings contants you can pass an invalid value and not find out until runtime. On the other hand, with enums it is impossible to create an invalid value without introducing a compiler error.

Seguir leyendo OCP 11 – Language Enhancements (Java Fundamentals – Enumerations)